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Abstract. The paper presents a personal view on the history of viscous-inviscid interaction methods, a history
closely related to the evolution of the method of matched asymptotic expansions. The main challenge in solving
Prandtl’s boundary-layer equations has been to overcome the singularity at a point of steady flow separation.
Stewartson’s triple-deck theory has inspired a solution to this challenge, and thereby it paved the way for industrial
use of viscous-inviscid interaction methods.
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1. Prandtl’s boundary layer

The history of the development of viscous-inviscid interaction methods started in Heidelberg
at 11:30 a.m. on August 12, 1904, when Ludwig Prandtl presented the ‘boundary layer’ before
an audience of mathematicians attending the Third International Mathematical Congress [1].
For decades, scientists had been confused by d’Alembert’s Paradox (‘discovered’ in 1752),
stating that “there is no drag on a finite body at rest in an infinite, incompressible, inviscid
flow otherwise in uniform motion” [2]. Prandtl described how the hardly visible boundary
layer near the surface of the body, through the influence of viscosity, can resolve this paradox.

Prandtl’s Heidelberg lecture is considered a landmark in the development of a branch of
mathematics nowadays called ‘matched asymptotic expansions’, although various roots of
the boundary-layer idea can be found already in the nineteenth century [3]. The method of
matched asymptotic expansions treats differential equations where a small parameter multi-
plies the highest derivative,i.e. setting the small parameter at zero implies dropping one (or
more) boundary conditions. As a consequence a series development in the small parameter is
no longer valid uniformly throughout the domain. Next to the boundary where in the small-
parameter limit boundary conditions have to be dropped, a thin layer has to be added where a
different series development is required. Prandtl named this thin layerGrenzschicht(English
translation: boundary layer), a name that has been used ever since for similar thin layers in
other applications.

In aerodynamic applications (Figure 1), the boundary layer is driven by the inviscid pres-
sure distributionpe and its (through Bernoulli’s law) related streamwise velocityue. In the
boundary layer the streamwise velocity component is reduced to zero in order to comply with
the no-slip condition at the surface. The lateral coordinatey, together with its corresponding
velocity componentv, scales with the inverse square root of the Reynolds number Re (defined
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Figure 1. Subdivision of the flow field around an airfoil in an inviscid-flow region and a viscous shear layer
(exaggerated in thickness).

in the usual way1). The flow equations can be simplified by neglecting the viscous streamwise
derivatives, whereas the lateral momentum equation states the pressure to be constant through
the boundary layer. Prandtl’sGrenzschichtgleichungenemerge (in non-dimensional form):

∂u

∂x
+ ∂v
∂y
= 0, u

∂u

∂x
+ v ∂u

∂y
= ue due

dx
+ 1

Re

∂2u

∂y2
, (1)

with boundary conditions

u(x,0) = v(x,0) = 0; u(x, ye) = ue,
whereye denotes the outer edge of the boundary layer.

Effectively, the boundary layer changes (thickens and smoothes) the shape of the geometry.
The resulting effective shape is called the displacement bodyy = δ∗, which now becomes a
streamline for the inviscid flow (e.g.Lighthill [4]).

The main advantage of the boundary-layer concept is that the elliptic character of the
Navier–Stokes equations is changed into a much easier handled parabolic character. The latter
was very relevant in an era when mainly analytical tools were available for solving differential
equations. The stable direction of the boundary-layer equations (1) is governed by the sign of
u. Hence this direction switches in reversed-flow regions, which has implications for the way
they are solved, as we will see below.

2. Flow separation and solution breakdown

For situations with attached flow the boundary layer provides only a small perturbation to
the inviscid-flow. However, it is found that as soon as the flow wants to separate from the
body surface, the steady boundary-layer calculation breaks down with a solution that tends
to become singular (cf. the conscientious discussion by Goldstein [5]). A number of possible
causes can easily be imagined:

(i) The growth of the solution violates the assumption made in boundary-layer theory that
streamwise derivatives should remain small. The remedy would be to include these stream-
wise derivatives in the equations of motion, but then the elliptic character of Navier–
Stokes is retained with its corresponding much higher computational complexity.

1All variables have been made dimensionless with a characteristic length scaleL and a characteristic velocity
scaleU . Re= UL/ν, whereν is the kinematic viscosity.
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(ii) The stable parabolic direction of the boundary-layer equations changes locally in reversed-
flow regions, with negative streamwise velocity. As a consequence, in these regions the
equations should be solved from downstream to upstream, hence one single downstream-
marching computational sweep does not suffice any longer.

Now, one has to keep in mind that in the first half of the century there were hardly any
appropriate tools to solve the flow equations. At that time it was impossible to check the
above two possibilities, and the issue had to remain open.

In 1948 Goldstein presented an in-depth discussion on the breakdown of the boundary-
layer equations at separation in which he added some more possible causes [5]. Since then,
the singularity at separation bears his name. In particular, on page 50 of his paper, Goldstein
formulates the following suggestion:

“Another possibility is that a singularity will always occur except for certain special pres-
sure variations in the neighbourhood of separation, and that, experimentally, whatever we
may do, the pressure variations near separation will always be such that no singularity will
occur. ”
It took twenty more years before algorithms and computers were sufficiently developed

to perform some numerical experiments in order to explore the options mentioned above.
One of these experiments was described in 1966 by Catherall and Mangler [6], who tried to
solve the steady boundary-layer equations with prescribed displacement thickness. Indeed,
they succeeded to pass the point of flow separation, but ran into difficulties a bit further
downstream. The reason hereof is clear, and in fact was already formulated by the authors
[6, p. 178]: ‘This is possibly to be expected, since the region of reversal flow should really be
integrated in the negativeξ-direction with boundary conditions provided from downstream.’
With current computer power, this problem is easily remedied by a downstream discretization
of the convective terms and subsequent repeated sweeps through the boundary layer. Never-
theless, as Catherall and Mangler were not convinced of their success, they stopped further
research into this subject. In fact, Catherall learned only some twenty years after publication
about the large impact their paper had created, as he told me a few years ago.

3. The triple deck

In the late sixties, inspired by ideas put forward by Lighthill in 1953 [7], Stewartson (for
steady subsonic and supersonic flow) [8, 9] and, independently, Messiter (subsonic) [10] and
Neiland (supersonic) [11], developed asymptotic theories in the neighbourhood of singular
points in the flow field, such as a trailing edge or a point of flow separation.

Therefore, let us consider a narrow region around such a singular pointS, of extent

x − xS = O(Re−α), 0< α < 1
2, with a scaled coordinatexα = (x − xS)Reα,

wherex-derivatives will be more important than assumed thus far. The restrictionα < 1
2

implies that the width is larger than the boundary-layer thickness; hencex-derivatives remain
less important thany-derivatives, which simplifies the analysis. Further it may be anticipated
that in vertical direction close to the singular point something happens: say at ay-scale given
by Re−β with β > 1

2 (which is smaller than the boundary-layer thickness).
Of course, the oncoming boundary-layer thicknessy = O(Re−1/2) will play a role as well.

Here the velocity profile immediately before the singular point can be written as (ỹ = Re1/2y)

u(xs, y) = β′(ỹ)+O(Re−1/2), where for ỹ ↓ 0 : B(ỹ ∼ 1
2aỹ

2. (2)
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Figure 2. The triple deck describes the asymptotic flow structure near singular points.

The functionB ′(ỹ) is known,e.g. it is a Blasius profile wherea = 0·332. Also they-scale
y = O(Re−α) will play a role, since therex-derivatives are as large asy-derivatives.

This three-layered structure, called the triple deck, is sketched in Figure 2. What is left
to find are the particular values forα andβ, the modelling pertinent to the individual flow
domains, and the flow of information between the separate decks. The latter point turns out to
be of crucial importance for the design of numerical solution methods.

To obtain the required insight into the triple-deck behaviour it is unavoidable to go into
some detail, therefore we will next give a short resume of the derivation of the (incompress-
ible) triple deck.

3.1. THE LOWER DECKy = O(Re−β)

In the lower deck the viscous terms balance with the convective terms. From (2) it follows that
the oncoming velocity profile at small values ofỹ is given byu ∼ aỹ. Hence fory = O(Re−β)

the horizontal velocity is of magnitudeu = O(Re1/2−β). An estimate of the convective and
diffusive terms gives forx = O(Re−α):

convection:u
∂u

∂x
= O(Re1−2β+α) ; diffusion:

1

Re

∂2u

∂y2
= O(Reβ−1/2).

Balancing these terms yields a relation betweenα andβ

β = α

3
+ 1

2
. (3)

With this value ofβ the horizontal velocity scales likeu = O(Re−α/3), whereas the balancing
pressure gradient corresponds withp = O(Re−2α/3).

After substitution of these estimates in the Navier–Stokes equations it follows that the flow
in the lower deck is still governed by Prandtl’s boundary-layer equations, with a pressure that
is again constant in the vertical direction:p(x, y) = Re−2α/3P(xα). High in the lower deck,
for yβ = Reβy →∞, we have

u(xα, yβ) ∼ Re−α/3{ayβ + aG(xα)+ · · ·}. (4)

The functionG is related to the displacement thickness, as will be clear in (6) below.
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Next to the solid-wall conditions atyβ = 0, as a first boundary condition at infinity the
coefficient ofyβ (i.e. a) is given. Additionally, another boundary condition is required. In the
classical interpretation this would be the prescription of the pressure,i.e. P(xα), but in the
spirit of Catherall and Mangler [6] this could also be a displacement effect,i.e.G(xα).

It is stressed that in this way the lower-deck equations form one relation betweenP andG.
A second relation can be found by matching with the other decks, as will be described next.

3.2. THE MIDDLE DECK y = O(Re−1/2)

In order to concentrate on the essential properties of the triple deck, the derivation of the
asymptotic expansions in the middle deck is only summarized (refer to the original papers by
Stewartson [8] and Messiter [10], or to a later paper by Meyer [12]).

The middle deck is determined through matching with the oncoming flow (2) and the
lower deck (3). It ‘simply’ shows a vertical shift of the oncoming velocity profile, caused by
the displacement effect of the lower deck. The expansions in the middle deck are

u(x, y) ∼ B ′(ỹ)+ Re−α/3B ′′(ỹ)G(xα)+ · · · , (5)

v(x, y) ∼ −Re2α/3−1/2B ′(ỹ)G′(xα)+ · · · . (6)

Once again, the leading term in the pressure turns out to be constant in they-direction:
p(x, y) ∼ Re−2α/3P(xα). This information is now passed on to the upper deck.

3.3. THE UPPER DECKy = O(Re−α)

In the upper deck thex- and y-dimensions are equal, whereas the viscous effects are not
important. It is governed by inviscid flow where Laplace’s equation and Bernoulli’s law hold.

SinceB ′(ỹ)→ 1 asỹ →∞, the vertical velocity (6) induces a vertical velocity−Re2α/3−1/2

G′(xα) in the upper deck. According to Laplace’s, a horizontal velocity perturbationũ of the
same order is to be expected; in fact it is given by

ũ(xα, yα) = − 1

π
Re2α/3−1/2

∫ ∞
−∞

G′(ξ)(x − ξ)

(xα − ξ)2+ y2
α

dξ. (7)

When in Bernoulli’s lawp + (u2 + v2)/2 = C one substitutesu = 1+ ũ andv = ṽ, with
ũ� 1 andṽ � 1, then to first approximation

p + ũ = C − 1
2. (8)

This implies that also the pressure expansion contains a term of order Re2α/3−1/2, which hence
is related to displacement effects.

Matching of middle and upper deck now yields two kinds of pressure terms in an expansion
that reads

p(x, y) = Re−2α/3p(p)(xα, yα)+ Re2α/3−1/2p(δ)(xα, yα)+ · · · . (9)

The termp(p) matches the pressure in the middle deck, so that it satisfiesp(p)(xα,0) = P(xα);
the termp(δ) arises due to displacement effects and through (8) is related to the horizontal
velocity perturbation given by (7).
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Figure 3. Hierarchy between pressure contributions in lower and upper deck at a streamwise lengthscale
x = O(Re−α).

3.4. LOSS OF HIERARCHY

Figure 3 shows the relative order of the two terms present in (9), and herewith it reveals the
essential character of the triple deck as we will see.

Whenα < 3/8 the termp(p) is the larger one in (9), and it determines, as usual, the pressure
P in the boundary layer. The lower-deck equations then provideG after which the second term
p(δ) can be determined, which in turn provides a pressure correction in the boundary layer. The
classical hierarchy between inviscid flow and boundary layer is recognized.

This situation changes forα = 3/8 when both pressure terms in (9) are equally important,
and this is what constitutes the essence of the triple deck. The pressure termsp(p) andp(δ)

have to be identical; thus by equating their values atyα = 0, from (7) and (8) a second relation
betweenP andG is obtained:

P(xα) = 1

π

∫ ∞
−∞

G′(ξ)
xα − ξ

dξ. (10)

The triple-deck equations now consist of Prandtl’s boundary-layer equations, with boundary
condition (4) and a second relation between pressure and displacement given by a Cauchy–
Hilbert integral (10).

Finally, for α > 3/8 the displacement pressurep(δ) is larger thanp(p). Hence the hierarchy
inverts, and the pressure is essentially determined in the lower deck.

Parallel to the above subsonic triple-deck, a supersonic version was developed by Stewart-
son and Williams [9]. Except for the description of the interaction, it is similar, to the inviscid
flow. Theglobal Cauchy-Hilbert integral (10) is replaced by alocal Prandtl-Meyer relation

P(xα) = −G′(xα). (11)

The triple deck has inspired a wealth of research on asymptotic descriptions; refere.g.to
the review papers by Stewartson [13] and Smith et al. [14–17] and the monograph by Sychev
et al. [18].

3.5. CONSEQUENCES FOR THE NUMERICAL TREATMENT

Because of its hyperbolic character the numerical treatment of the supersonic equations is
relatively easy: in the absence of reversed flow a single marching sweep through the bound-
ary layer suffices. A solution was presented already, together with their first formulation by
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Stewartson and Williams [9], leaving the authors somewhat surprised that, even with reversed
flow, their single marching sweep did not tend to become unstable.

The elliptic character of the subsonic triple-deck equations posed a larger challenge, how-
ever. It took half a decade before the first full (numerical) solutions were presented [19–21].
With hindsight, today the essence of the numerical obstinacy can ‘easily’ be understood. In
the triple deck the boundary layer is no longer merely providing small corrections to the flow,
but instead wants to have an equal say in determining the flow field. In aerodynamical terms,
the hierarchy between boundary layer and inviscid flow changes fromweakinteraction into
strong interaction. Lagerstrom [22, p. 209] in 1975 described the spirit of the triple deck as
follows:

“An important feature is that the pressure is self-induced, that is, the pressure due to
displacement thickness is determined simultaneously with the revised boundary-layer so-
lution. [...] this solution exhibits a definite loss of hierarchy.”

This lack of hierarchy should also be visible in the numerical information exchange between
boundary layer and inviscid flow, thus guiding their appropriate numerical iterative treatment;
see Section 5.

Sixteen years earlier, Hayes and Probstein in their monograph on hypersonic flow [23,
p. 365] came to a similar conclusion about the boundary-layer interaction near a point of flow
separation:

“ ... in general it requires solving simultaneously the integrated momentum and energy
equations and the inviscid flow relation describing the pressure along the curvey = δ∗(x).
”

One should realise, of course, that here the inviscid flow is supersonic and the displacement
effect of the boundary layer is described by the local Prandtl–Meyer fan (11). Nevertheless,
the notion ‘simultaneous’ was already present!

Remark

The above interactive boundary-layer concept is restricted to mildly separated flows,i.e.
flows where the thickness of the reversed-flow region is comparable to the boundary-layer
thickness. For larger regions of reversed flow (marginal separation or, larger still, massive sep-
aration), the asymptotic structure has to be revised [24, 25]. At the same time, the flow in these
larger separated-flow regions physically becomes unstable: an unsteady boundary-layer model
has to be used, whose validity, in turn, terminates with a Van Dommelen-Shen singularity [26].
In a consistent way, numerical simulation methods based on the thin-boundary-layer concept
tend to break down when the thickness of the separated-flow region becomes significant,e.g.
[27], thus giving a warning that the selected flow modelling should be reconsidered. Readers
might wish to consult Chapter 14 of the enlarged edition of Schlichting’s ‘Boundary-Layer
Theory’ [28] for a more detailed discussion of these asymptotic issues.

4. Non-asymptotic points of view

In the late seventies the quest for the cause of the singularity has also moved along non-
asymptotic lines, which in retrospect can be related to the above. Several investigations into
the boundary-layer relation between pressure and displacement thickness have been carried
out, which all produced a similar outcome.



196 A.E.P. Veldman

Figure 4. SomeH -H1 relationships as used at ONERA [29], RAE [30] and NLR [31] around 1980. The three
relations agree on having a minimum somewhere nearH ≈ 2.7, corresponding with the onset of separation. For
larger values ofH the curves disagree, but experimental data to support these curves was rare at that time.

First, we will present the reflections of LeBalleur [29] at ONERA in France. He considered
an integral formulation of the turbulent boundary-layer equations, consisting of Von Kármán’s
integral equation and Head’s entrainment equation. In caseue is prescribed, these differential
equations are conveniently ordered as

Von Kármán:
dθ

dx
= 1

2cf −
θ

ue
(2+H)due

dx
,

Entrainment: H1
dθ

dx
+ θ

dH1

dx
= E

ue
− θH1

ue

due
dx
.

(12)

Here,θ is the momentum thickness,H the shape factorθ/δ∗, cf the shear-stress coefficient,
E Head’s entrainment function andH1 the entrainment shape factor (which is assumed to be
a function ofH only). The two differential equations are supplemented with three algebraic
relations for determiningH , E andcf .

LeBalleur [29] demonstrated that the numerical problems at separation are caused by the
algebraic relation betweenH andH1. SinceH1 follows from the two differential equations
(12), the algebraic relation should provideH . However, the graph ofH1 as a function ofH
shows a minimum at (or nearby) a point of flow separation. Figure 4 gives versions of this
relation as used at ONERA [29], RAE [30] and NLR [31] around that time; supporting exper-
imental data can be found in the review paper by Lock and Williams [32]. As a consequence,
not for every value ofH1 is it possible to find a value forH ! LeBalleur further showed that,
when alsoue is considered an unknown, no difficulties arise (an extra equation has to be added
that describes the coupling between inviscid flow and boundary layer).

As another example, a numerical experiment performed at the National Aerospace Labo-
ratory (NLR) in Amsterdam will be described [33]. In this study the original boundary-layer
equations (1),i.e. as a field method, were solved with a prescribed displacement thickness
chosen such that flow separation occurred. Then at a fixedx-stationδ∗ was varied, keeping
every other station fixed, and the variations ofue and the shear-stress coefficientcf were
studied. It turned out that in this wayue as a function ofδ∗ possessed a minimum that seemed
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e
Figure 5. Behaviour ofue andcf as a function ofδ∗ at a fixed boundary-layer station (left), and Falkner–Skan
relation between pressure parameterm, shear stressf ′′(0) and displacement parameterδ (right). The left-hand
graph is from boundary-layer calculations in 1977; the right-hand graph could have been drawn in 1954.

to correspond (within one or two grid cells) with the point wherecf vanishes,i.e. a point of
flow separation; Figure 5 (left) gives the idea2 very resemblant of Figure 4.

All similar studies [34, 35] suggested that the velocity distributionue cannot be prescribed
arbitrarily near a point of flow separation. There is a certain range inue-values outside which
no solution seems to exist, a situation correctly predicted by Goldstein some thirty years ear-
lier. In terms of dynamical systems, passing the separation point withue prescribed amounts
to crossing a saddle point, as explained by Kumar and Yajnik [36]. It would be interesting to
study this issue from a theoretical point of view. Only little theory on existence and uniqueness
of solutions of the boundary-layer equations exists [37, 38], but with the current numerical
evidence it is known what to look for.

In retrospect, it is not difficult to recognize that already earlier similar types of graphs could
have been presented,e.g. in relation with the family of Falkner–Skan similarity solutions of
the boundary-layer equations [39]. This family is governed by the equation

f ′′′ + ff ′′ + 2m

m+ 1
(1− f ′2) = 0, f (0) = f ′(0) = 0, f ′(∞) = 1,

wherem is a parameter related to the pressure gradient throughm = x(due/dx)/ue. In par-
ticular, the main branch of attached flow solutions only exists form > −0·0904, whereas
for −0·0904 < m < 0 also a separated flow branch exists; this branch was identified by
Stewartson in 1954 [40]. Figure 5 (right) gives an unusual presentation of the Falkner–Skan
results: the pressure parameterm and the shear variablef ′′(0) are shown as a function of the
displacement thicknessδ (defined throughf (η) ∼ η − δ for η→∞); the resemblance with
the much more recent graph in Figure 5 (left) is striking!

2The curves have been copied from my research notes of 15 December 1977, drawn in pencil on millimeter paper.
The scaling of the axes was not indicated, but it is not relevant: the locations of the minimum inue and of the zero
of cf are all that matter.
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5. Viscous-inviscid interaction methods

The above, mainly theoretical, considerations brought the insight to tackle engineering boun-
dary-layer problems in an industrial context. The message is twofold: firstly, the boundary-
layer approximation is sufficiently accurate to model the flow in mildly separated flow regions;
secondly, and most importantly, the hierarchy between boundary layer and inviscid flow is lost.
Although for turbulent flow a different asymptotic structure exists [41], the two messages from
laminar-flow theory carry over, and in the discussion of Goldstein’s singularity the distinction
between laminar flow and turbulent flow is irrelevant.

Thus, interactive boundary-layer models were proposed, where Prandtl’s boundary-layer
equations were coupled with a relation like (10), describing the main interaction with the
inviscid flow, or with an accurate inviscid-flow solver. Such a coupled problem can be written
as, in principle, two equations with two unknowns:

external inviscid flow: ue = E[δ∗], (13)

boundary-layer flow: ue = B[δ∗]. (14)

HereE denotes the external inviscid-flow operator, whereasB is the boundary layer operator
for prescribed displacement thickness; note that near flow separation the inverseB−1 does not
exist.

In the classical, or ‘direct’, methodue is computed from the inviscid-flow equation (13),
whereas the displacement thickness is determined from the viscous flow (14), with a break-
down ofB−1 in separation.

Inspired by the theoretical developments described above, in the second half of the seven-
ties a number of ideas have been put forward to circumvent the breakdown singularity. The
simplest way is to invert the direction of the iterative process in the classical method. One
obtains the so-called ‘inverse’ method, where, following the idea proposed by Catherall and
Mangler [6], the boundary layer is solved with prescribed displacement thickness. An early
success was obtained by Carter [42] when he computed the separated flow past an indented
plate, by now often used as a benchmark problem [43]. For engineering applications, however,
the inverse method converges very slowly and it has not been used on a large scale. To speed
up convergence, other methods were developed, of which two have survived [32]: the semi-
inverse method of LeBalleur [29, 44] and Carter [45], and the quasi-simultaneous method
[46, 47].

5.1. SEMI-INVERSE

The semi-inverse method (Figure 6, left) introduced by LeBalleur in France [29, 44], and
independently by Carter in the USA [45], is a mixture of the direct and the inverse method: it
solves the boundary-layer equations with prescribed displacement thickness, and the inviscid
flow in the traditional way (hence also with prescribed displacement thickness):

uEe = E[δ∗(n−1)] (direct); uBe = B[δ∗(n−1)] (inverse);

δ∗(n) = δ∗(n−1) + ω
(
uBe − uEe

)
.

(15)

In order to obtain convergence, some tuning of the relaxation parameterω is required, and a
fair convergence can be obtained.
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Figure 6. Semi-inverse and quasi-simultaneous VII method.

5.2. QUASI-SIMULTANEOUS

The quasi-simultaneous method follows the suggestion made by Lagerstrom [22]. It wants
to reflect the lack of hierarchy between both subdomains: in principle, it wants to solve both
subdomain problems simultaneously. When the boundary layer is modelled by an integral
formulation a simultaneous coupling is well feasible,e.g. [31, 48]; in principle, such an
approach has my preference. However, when in both domains a field formulation is cho-
sen, software complexity may prohibit a practical implementation. Recall that around 1980
mainframe computers possessed a memory of only 1(!) Mbyte. At that time this prevented
a fully simultaneous approach, and the idea was born to solve the boundary-layer equations
simultaneously with asimplebut goodapproximationof the inviscid flow, which was termed
the interaction law. The difference between this approximation and the ‘exact’ inviscid flow
can then be handled iteratively. In this way, the quasi-simultaneous method (Figure 6, right)
can be formulated as

u(n)e − I [δ∗(n)] = E[δ∗(n−1)] − I [δ∗(n−1)],
u(n)e − B[δ∗(n)] = 0,

(16)

where the interaction law reads (compare (10))

I [δ∗] = 1

π

∫
0

dδ∗

dξ

dξ

x − ξ
(17)

(x is still the streamwise boundary-layer coordinate). It is observed in (16) that the interaction
law is used in defect formulation,i.e. it does not influence the final converged result, but it
only enhances the rate of convergence!

Later, when larger computers became available, in engineering applications this simple
interaction law has been replaced by more sophisticated ones, for instance interaction laws
based on a discrete Laplace description of the inviscid flow (the VILMA method of Arnold
and Thiele [49]), or based on an inviscid panel method (e.g.Coenen [50]). In this way a better
convergence of the iterations in (16) can be obtained. On the other hand, from a scientific
point of view, it is interesting to find out how far the above interaction law can be simplified
even further. In other words, how close to the traditional ‘ue = prescribed’ can the bound-
ary condition for the viscous flow equations be chosen, without being struck by Goldstein’s
singularity, while at the same time yielding acceptable convergence ot the iterations in (16)?

In three dimensions a similar approach is feasible, with two thin-airfoil expressions like
(17) relating the two inviscid surface-velocity components to the shape of the displacement
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body, as demonstrated,e.g., by Rogetet al. [51] and Edwards [52]. The latter author was
largely inspired by Davis, who at the east coast of the USA has initiated research in interactive
boundary layers [53]. Related work in the UK has been carried out by Smith and co-workers
[54]. At the USA west coast Cebeci has been an active advocate of quasi-simultaneous VII
methods in engineering applications (airfoil analysis and design) [55]. For three-dimensional
engineering flow simulations much pioneering work has been done by Cousteix and his col-
leagues in France [56].

6. Inclusion of streamline curvature

Especially for rear-loaded airfoils the streamlines immediately behind the trailing edge are
highly curved. In such a situation the assumption of constant pressure across the boundary
layer is no longer justifiablea priori. In asymptotic terms it means that higher-order effects,
in regions possibly even smaller than the triple-deck, are becoming relevant.

The effect of streamline curvature can be modelled by a jump between the pressure in the
boundary layerpe and the pressure of the inviscid flowEp[δ∗] [32]:

pe = Ep[δ∗] − [p] with [p] = κρeu
2
e(δ
∗ + θ), (18)

whereκ represents the streamline curvature. The extended version of (16) thuscouldbecome

p(n)e − Ip[δ∗(n)] = Ep[δ∗(n−1)] − [p](n−1) − Ip[δ∗(n−1)],
p(n)e − Bp[δ∗(n)] = 0.

(19)

The change of notation fromE to Ep will be clear; the influence of streamline curvature is
more easy explained in terms ofpe than in terms ofue.

The pressure jump (18) is proportional toκ, which can be taken as the curvature of the
displacement body [32]. Thus, the pressure jump scales with the ‘second derivative’ of the
streamlines and herewith it introduces a strong-interaction character, as will be explained next.

6.1. ASYMPTOTIC VIEW

In asymptotic terms the strong-interaction character can be understood as follows. For a plate
under angle of attack,e.g., the inviscid trailing-edge streamline, and hence the displacement
body, leaves the edge asy ∝ x3/2, x ↓ 0; therefore its curvature behaves∝ x−1/2. The
pressure jump (18) then becomesO(Re−1/2 x−1/2), and in the inviscid flow a vertical velocity
component of the same magnitude is created. In turn, by integrating this vertical velocity in
thex-direction, we will create a disturbancey = O(Re−1/2 x1/2) in the inviscid position of
the trailing-edge streamline. Whenx = O(Re0), for Re→ ∞ this term is smaller than our
original starting pointy ∝ x3/2; however whenx is smaller thanO(Re−1) the disturbance is
larger than the original. As in the above triple-deck derivation, a change of hierarchy occurs,
indicating strong interaction and requiring a simultaneous treatment.

6.2. NUMERICAL ANALYSIS

This reasoning again has a parallel in numerical terms. When the pressure jump is evaluated
from a previous iteration as indicated by (19), throughκ, in the discretisation of the second
derivative of the displacement body it generates a contribution to the iterative amplification
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factor proportional to(δx)−2, whereδx is the mesh size. If we allow the mesh size to approach
zero, this amplification blows up, as in the above asymptotic view whenx tends to zero. This
explains the numerical difficulties encountered in the literature when the curvature effect is
not treated in a simultaneous way [32, p. 82]. Extensive smoothing and underrelaxation is
then required to obtain convergence of the viscous-inviscid iterations, as stated by [57] and
references therein.

Once again a simultaneous treatment of the curvature effect is required. The term[p](n−1)

should be shifted to the left-hand side in (19) and evaluated at the new iteration level(n).
However, this necessary step to obtain convergence for small grid size turns out not to be
sufficient. There is another (delicate) issue, which can be understood through a generalization
of the analysis in [58]. Let us assume that the curvature is computed from the displacement
body, i.e.κ = d2δ∗/dx2. Then the pressure jump (18) becomes

[p] = ρeu
2
e(δ
∗ + θ)

d2δ∗

dx2
to be abbreviated as[p] = cd2δ∗

dx2
.

The quasi-simultaneous system (19) now reads

p(n)e − Ip[δ∗(n)] + c
d2

dx2
δ∗(n) = Ep[δ∗(n−1)] − Ip[δ∗(n−1)],

p(n)e − Bp[δ∗(n)] = 0.
(20)

Since bothIp and d2/dx2 are negative-(semi)definite operators, and sincec > 0, the two
operators mentioned counteract each other in the left-hand side of (20)! Moreover, since the
discrete version ofIp scales with(δx)−1, whereas the curvature term scales with(δx)−2, the
unfavourable influence of the latter can be made arbitrarily large for vanishing grid size. The
envisaged iterations will not converge, and there is only one way out of this problem: discretize
the second derivative with a one-sided expression

d2δ∗

dx2

∣∣∣∣
i

= δ∗i−2− 2δ∗i−1 + δ∗i
(δx)2

(21)

(the downstream-biased version will also work). At least in this way the eigenvalues of the
discrete operator in (21) are positive, and hence of the same sign as those of−Ip. Numerical
experiments with the usual central discretization of the second derivative and with the above
upstream-biased one have consistently revealed that only the latter one could be made con-
vergent (at least for not too violent flow cases, which probably is related to the onset of wake
instability – more research is required here). An in-depth theoretical discussion of this issue
will be presented in a forthcoming publication [59].

7. Application to transonic airfoil flow

The performance of the quasi-simultaneous coupling concept will be demonstrated on a typ-
ical calculation of transonic flow past an RAE 2822 airfoil with the NLR Vistrafs code. The
boundary layer was modelled by Prandtl’s equations with the algebraic Cebeci-Smith turbu-
lence model; effects of streamline curvature were included. The inviscid flow was modelled by
transonic full potential theory. As an interaction law, the integral (17) has been used to describe
the symmetric displacement effects (‘thickness problem’), together with its skew-symmetric
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Figure 7. RAE 2822 airfoil atM=0·725, Re=6·5mill., α=2·44,CL=0·743 (Case 6). Pressure distribution (left) and
comparison of lift predictions by various VII and NS methods [61] (right).

counterpart to describe the effects of camber (‘lift problem’); for details see Veldman et al.
[59, 60].

The flow case presented in Figure 7 is mildly transonic, with a small amount of separated
flow near the trailing edge. Pertinent flow parameters areM = 0·725, Re = 6·5 million,
αexp= 2·92 (with a corrected value ofα = 2·44) and fixed transition at 3% chord.

The computational grid consists of 173× 21 gridpoints (C-type, with 128 points along the
airfoil surface) in the boundary layer, and the inviscid-flow grid was 128× 64 (O-type). The
computations require about 10 quasi-simultaneous iterations to converge to 3–4 digits, which
on a modern PC takes less than one minute (it was so much different in the mid-eighties when
this method was developed ...). The rate of convergence is governed by the difference between
the exact inviscid flowE and its approximationI ; as a consequence it is independent of grid
size. To appreciate the fast convergence even better, one has to realize that the external flow
in this example is transonic, with a significant supersonic flow region, whereas the interaction
law (17) is based on sub(!)sonic theory.

In 1986 this flow case has been the subject of a workshop [61], where about twenty aero-
dynamic codes were compared. The lift coefficient predicted by these codes is presented in
Figure 7 (right), where a distinction has been made between viscous-inviscid interaction (VII)
codes and Navier–Stokes codes. A similar situation was found for the other flow cases inves-
tigated in the workshop. The participants were also requested to quantify the computational
complexity of their codes: it was found that, depending on the inviscid flow model used, VII
codes were one to two orders of magnitude cheaper than Navier–Stokes codes. The latter codes
required 106–107 floating-point operations per grid point; a price tag that is still representative
for today’s Navier–Stokes codes, as can be inferred from the review data presented by Agarwal
[62].

A conclusion of the workshop must be that, in spite of their much smaller complexity,
the quality of the VII results is comparable to that of the Navier–Stokes results. In fact, the
quality of flow simulations for this type of flow appears to be dominated by the quality of
the turbulence model. Any difference between a full Navier–Stokes model and a simplified
boundary-layer model just drowns in the uncertainty inherent in turbulence modelling. As
stated by Holst [61]: “An engineering turbulence model that can approximately predict the
size and extent of separated regions is desperately needed.” Since 1986 the situation has not
changed significantly. A European CFD validation project in 1992 once again revealed that
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the uncertainty due to turbulence modelling produces a large spreading of the Navier–Stokes
results [63].

Of course, Navier–Stokes modelling is required in situations where the viscous region can
no longer be regarded as thin, such as massive flow separation in take-off and landing config-
urations, or the flow near essentially three-dimensional objects. In this respect it is remarkable
that maximum-lift prediction with a VII method appears to be feasible, as demonstrated by
Cebeci and co-workers [55, 64].

8. Concluding remarks

Prandtl’s 1904 boundary-layer theory formed the starting point for the viscous-inviscid inter-
action methods that have been developed in the last two decades of the 20th century. They have
become very popular, since in comparison with brute-force Navier–Stokes solutions they are
about two orders less expensive, whereas for flow conditions with thin shear layers the results
are equally useful. Because of their modest computational complexity, they are ideal for use
in aerodynamic-airfoil and wing-optimization studies,e.g.[65, 66, 67, 68].

The greatest challenge has been to understand and resolve the singularity at separation,
which occurs when the boundary-layer equations are solved with prescribed pressure. In 1948,
Goldstein already foresaw the possibility that near separation in general no solution does exist,
unless the pressure satisfies certain properties. Triple-deck theory provided the insight behind
these difficulties, and gave the clue towards their solution. Goldstein turns out to have pointed
in the right direction of non-existence; doubts on the validity of the boundary-layer model
were found not to be essential here.

Stewartson and his 1969 contemporates have provided the asymptotic framework valid
near separation: the triple deck. In 1975 Lagerstrom described his view on the triple deck,
and today we know that his paper contains the essential message required to overcome the
singularity at a point of flow separation: boundary-layer and inviscid flow have to be solved
simultaneously. It is through this type of insight that the use of viscous-inviscid interaction
methods in engineering applications can flourish.

Only a small, strongly personally biased, glimpse of the world-wide struggle between
Prandtl’s boundary-layer concept and the numerical simulation of separated flow could be
shown in the paper: we have emphasised steady incompressible flow, and scratched only
superficially supersonic inviscid flow and unsteady flow separation. Many instances can be
found in the literature which, in retrospect, were close to unraveling the correct view, but lack
of computational power preventing further pursuit. It would be interesting to analyse all these
‘close encounters’, and I hope to find another occasion to dig deeper into this intrigueing
20th-century story.
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